Carbamazepine (CBZ), a widely used antiepileptic drug, is known for its therapeutic efficacy but exhibits suboptimal physicochemical characteristics, including limited bioavailability, low solubility, and poor dissolution rates. In recent years, cocrystallization has emerged as a promising approach to improve these properties and enhance the overall performance of CBZ. This review paper presents a comprehensive exploration of the advances in CBZ cocrystals, focusing on their role in enhancing bioavailability, solubility/dissolution rates, morphology, and stability compared to raw CBZ. It delves into the in‐depth examination of computational techniques, such as molecular modelling and crystal structure prediction, that play a pivotal role in the rational design and prediction of CBZ cocrystals, thereby expediting the development process. Additionally, the morphological attributes of CBZ cocrystals are discussed, shedding light on how the unique crystal structures affect their physical properties. Stability is another critical aspect addressed in this review, encompassing thermal, physical, and chemical stability. The thermal behavior of CBZ cocrystals is analyzed through differential scanning calorimetry (DSC), and their crystal structures are characterized by techniques such as X‐ray diffraction (XRD) and Fourier‐transform infrared spectroscopy (FTIR). These analyses reveal the stability and structural changes of CBZ cocrystals under various conditions, providing valuable insights for formulation and storage. In summary, this comprehensive review paper amalgamates the latest advancements in CBZ cocrystals, demonstrating their capacity to significantly improve bioavailability, solubility, dissolution rates, and stability.