Summary E-cadherin is synthesized as a precursor and then undergoes cleavage by proprotein convertases. This processing is essential for Ecadherin maturation and cell adhesion. Loss of cell adhesion causes detachment-induced apoptosis, which is called anoikis. Anoikis can be inhibited despite loss of cell-matrix interactions by preserving E-cadherin-mediated cell-cell adhesion. Conversely, acute loss of Ecadherin sensitizes cells to apoptosis by unknown post-translational mechanisms. After treatment of breast cancer cells with drugs, we found that two independent modifications of E-cadherin inhibit its cell surface transport. First, O-linked b-N-acetylglucosamine (OGlcNAc) modification of the cytoplasmic domain retains E-cadherin in the endoplasmic reticulum. Second, incomplete processing by proprotein convertases arrests E-cadherin transport late in the secretory pathway. We demonstrated these E-cadherin modifications (detected by specific lectins and antibodies) do not affect binding to a-catenin, b-catenin or c-catenin. However, binding of E-cadherin to Type I gamma phosphatidylinositol phosphate kinase (PIPKIc), a protein required for recruitment of E-cadherin to adhesion sites, was blocked by O-GlcNAc glycosylation (O-GlcNAcylation). Consequently, E-cadherin trafficking to the plasma membrane was inhibited. However, deletion mutants that cannot be O-GlcNAcylated continued to bind PIPKIc, trafficked to the cell surface and delayed apoptosis, confirming the biological significance of the modifications and PIPKIc binding. Thus, O-GlyNAcylation of E-cadherin accelerates apoptosis. Furthermore, cell-stress-induced inactivation of proprotein convertases, inhibited E-cadherin maturation, further exacerbating apoptosis. The modifications of E-cadherin by O-GlcNAcylation and lack of pro-region processing represent novel mechanisms for rapid regulation of cell surface transport of E-cadherin in response to intoxication.