Water deficit is a major factor limiting crop yield in rainfed areas. We hypothesized that under water deficit the decrease of photosynthetic production stimulates: carbohydrate remobilization from leaves, stems and roots to reproductive organs; and decreasing flowering intensity and pod development. The present work aims to study the effect of water deficit during bloom and grain pod-filling stages in two indeterminate soybean cultivar, and seeds per plant. The fact that grain yield was less affected by water deficit at bloom than at grain pod-filling stage was attributed to larger seeds found at bloom. In both treatments, a sharp reduction on carbohydrate content was found in leaves, stem and roots at the beginning of pod formation. The high amounts of carbohydrates remobilized for seed growth, along with the high values of A i observed in well-watered plants, indicate that grain yield of soybeans is source rather than sink limited. On the other hand, in water deficit treatments, a new stimulus for carbohydrate storage was found in the leaves and stem at the beginning of grain maturity, suggesting that grain yield was limited by sink capacity.