Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Low-carbohydrate diets (LCD) have been promoted for weight control and type 2 diabetes (T2D) management, based on an emerging body of evidence, including meta-analyses with an indication of publication bias. Proposed definitions vary between 50 and 130 g/d, or <10 and <40 % of energy from carbohydrate, with no consensus on LCD compositional criteria. LCD are usually followed with limited consideration for other macronutrients in the overall diet composition, introducing variance in the constituent foods and in metabolic responses. For weight management, extensive evidence supports LCD as a valid weight loss treatment, up to 1–2 years. Solely lowering carbohydrate intake does not, in the medium/long term, reduce HbA1c for T2D prevention or treatment, as many mechanisms interplay. Under controlled feeding conditions, LCD are not physiologically or clinically superior to diets with higher carbohydrates for weight-loss, fat loss, energy expenditure or glycaemic outcomes; indeed, all metabolic improvements require weight loss. Long-term evidence also links the LCD pattern to increased CVD risks and mortality. LCD can lead to micronutrient deficiencies and increased LDL-cholesterol, depending on food selection to replace carbohydrates. Evidence is limited but promising regarding food choices/sources to replace high-carbohydrate foods that may alleviate the negative effects of LCD, demanding further insight into the dietary practice of medium to long term LCD followers. Long-term, high-quality studies of LCD with different food sources (animal and/or plant origins) are needed, aiming for clinical endpoints (T2D incidence and remission, cardiovascular events, mortality). Ensuring micronutrient adequacy by food selection or supplementation should be considered for people who wish to pursue long-term LCD.
Low-carbohydrate diets (LCD) have been promoted for weight control and type 2 diabetes (T2D) management, based on an emerging body of evidence, including meta-analyses with an indication of publication bias. Proposed definitions vary between 50 and 130 g/d, or <10 and <40 % of energy from carbohydrate, with no consensus on LCD compositional criteria. LCD are usually followed with limited consideration for other macronutrients in the overall diet composition, introducing variance in the constituent foods and in metabolic responses. For weight management, extensive evidence supports LCD as a valid weight loss treatment, up to 1–2 years. Solely lowering carbohydrate intake does not, in the medium/long term, reduce HbA1c for T2D prevention or treatment, as many mechanisms interplay. Under controlled feeding conditions, LCD are not physiologically or clinically superior to diets with higher carbohydrates for weight-loss, fat loss, energy expenditure or glycaemic outcomes; indeed, all metabolic improvements require weight loss. Long-term evidence also links the LCD pattern to increased CVD risks and mortality. LCD can lead to micronutrient deficiencies and increased LDL-cholesterol, depending on food selection to replace carbohydrates. Evidence is limited but promising regarding food choices/sources to replace high-carbohydrate foods that may alleviate the negative effects of LCD, demanding further insight into the dietary practice of medium to long term LCD followers. Long-term, high-quality studies of LCD with different food sources (animal and/or plant origins) are needed, aiming for clinical endpoints (T2D incidence and remission, cardiovascular events, mortality). Ensuring micronutrient adequacy by food selection or supplementation should be considered for people who wish to pursue long-term LCD.
Low-carbohydrate diets are being widely recommended, but with apparently conflicting evidence. We have conducted a formal systematic review of the published systematic reviews of RCTs between low-carbohydrate vs. control (low-fat/energy-restricted) diets in adults with overweight and obesity. In MEDLINE, Embase, Web of Knowledge and Cochrane Database of Systematic Reviews, searched from inception to September 2017, we identified 12 systematic reviews, 10 with meta-analyses. Differences in methods, study quality, weight change and citations of published systematic reviews were assessed by AMSTAR-2. Review methods varied in definitions of low-carbohydrate diet, databases searched and bias assessment. Overall review quality was high in two, moderate in three, critically low in seven. Among meta-analyses, 4/5 with critically low quality showed low-carbohydrate diet superiority for weight loss (0.7-4.0 kg), while high quality meta-analyses reported little or no difference between diets. Greater numbers of participants correlated with smaller differences in weight loss (r = 0.73, p = 0.03). More citations correlated with lower review quality (rho = -0.9, p = 0.037), with larger differences in weight loss (rho = -0.9, p = 0.037), and with journal impact factor (rho = 1.0, p = 0.01). In conclusion, publication acceptance and citations appear to favour apparently larger effect sizes above methodological quality. Better quality reviews and RCTs are needed, before recommending low-carbohydrate diets as preferred to other approaches for energy restriction.
Nonalcoholic fatty liver disease (NAFLD) is emerging globally, while no therapeutic medication has been approved as an effective treatment to date, lifestyle intervention through dietary modification and physical exercise plays a critical role in NAFLD management. In terms of dietary modification, Mediterranean diet is the most studied dietary pattern and is recommended in many guidelines, however, it may not be feasible and affordable for many patients. Recently, a ketogenic diet and intermittent fasting have gained public attention and have been studied in the role of weight management. This article reviews specifically whether these trendy dietary patterns have an effect on NAFLD outcomes regarding intrahepatic fat content, fibrosis, and liver enzymes, the scientific rationales behind these particular dietary patterns, as well as the safety concerns in some certain patient groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.