This paper presents new above-ground biomass (AGB) and biomass components equations for seventeen forest species in the temperate forests of northwestern Mexico. A data set corresponding to 1336 destructively sampled oak and pine trees was used to fit the models. Generalized method of moments was used to simultaneously fit systems of equations for biomass components and AGB, to ensure additivity. Additionally, the carbon content of each tree component was calculated by the dry combustion method, in a TOC analyser. The fitted equations accounted for on average 91, 83, 84 and 78% of the observed variance in stem wood and stem bark, branch and foliage biomass, respectively, whereas the total AGB equations explained on average 93% of the total observed variance in AGB. The inclusion of h or d 2 h as additional predictor in the d-only based equations systems slightly improved estimates of stem wood, stem bark and total above-ground biomass, and greatly improved the estimates produced by the branch and foliage biomass equations. The fitted equations were used to estimate AGB stocks at stand level from a database on growing stock from 429 permanent sampling plots. Three machine-learning techniques were used to model the estimated stand level AGB and carbon contents; the selected models were applied to map the AGB and carbon distributions in the study area, which yielded mean values of 129.84 Mg ha -1 and 63.80 Mg ha -1 , respectively.