This review is focused on the theoretical and practical aspects of electrochemical c a p a c i t o r sb a s e do nc a r b o nn a n o t u b e s .I np articular, recent improvements in the capacitance properties of the systems are discussed. In the first part, the charge storage mechanisms of the electrochemical capacitors are briefly described. The next part of the review is devoted to the capacitance properties of pristine single-and multi-walled carbon nanotubes. The major portion of the review is focused on the capacitance properties of modified carbon nanotubes. The electrochemical properties of nanotubes with boron, nitrogen, and other atoms incorporated into the carbon network structure as well as nanotubes modified with different functional groups are discussed. Special attention is paid to the composites of carbon nanotubes and conducting polymers, transition metal oxides, carbon nanostructures, and carbon gels. In all cases, the influences of different parameters such as porosity, structure of the electroactive layer, conductivity of the layer, nature of the heteroatoms, solvent and supporting electrolyte on the capacitance performance of hybrid materials are discussed. Finally, the capacitance properties of different systems containing carbon nanotubes are compared and summarized.