In his pioneering work to unravel the catalytic power of enzymes, Warshel has pertinently validated that electrostatic interactions play a major role in the activation of substrates. Implementing such chemical artifice in molecular catalysts may help improve their catalytic properties. In this study, a series of tetra‐, di‐, and mono‐substituted iron porphyrins with cationic imidazolium groups were designed. Their presence in the second coordination sphere helped stabilize the [Fe−CO2] intermediate through electrostatic interactions. It was found herein that the electrocatalytic overpotential is a function of the number of embarked imidazolium. Importantly, a gain of six orders of magnitude in turnover frequencies was observed going from a tetra‐ to a mono‐substituted catalyst. Furthermore, the comparative study showed that catalytic performances trend of through‐space electrostatic interaction, a first topological effect reported for iron porphyrins, outperforms the classical through‐structure electronic effect.