Extracellular acidification inhibited LPS-induced TNF-α protein production, which was associated with an inhibition of TNF-α mRNA expression, in mouse peritoneal macrophages. The LPS-induced cytokine production was also inhibited by Gs protein-coupled receptor agonists prostaglandin E1 and isoproterenol. Among OGR1 family proton-sensing GTP-binding regulatory protein-coupled receptors, TDAG8, OGR1, and G2A are expressed in the cells. The inhibitory action by acidic pH on TNF-α production was significantly attenuated in macrophages from TDAG8Tp/Tp mice but not in those from OGR1geo/geo mice. Moreover, small interfering RNA specific to TDAG8, but not to G2A, clearly attenuated the acidification-induced inhibition of TNF-α production. On the other hand, the down-regulation or deficiency of TDAG8 hardly affected prostaglandin E1- or isoproterenol-induced actions. LPS-induced IL-6 production was also inhibited by extracellular acidification in a manner that was sensitive to TDAG8 expression. The acidic pH-induced inhibitory action on the cytokine production was significantly reversed either by a small interfering RNA specific to Gs proteins or by a protein kinase A (PKA)-specific inhibitor H89. Indeed, a PKA-specific cAMP derivative inhibited LPS-induced cytokine production. Moreover, acidification induced cAMP accumulation in a TDAG8-specific way. We conclude that TDAG8, at least partly, mediates the extracellular acidification-induced inhibition of proinflammatory cytokine production through the Gs protein/cAMP/PKA signaling pathway in mouse macrophages.