Carbon emission calculation during power transmission and substation construction provides valuable insights into the trend of carbon emissions and the development of low-carbon power grids. In this regard, this study divides the power transmission and substation construction process into production, transportation, and construction stages based on the sources of carbon emissions and employs a life cycle assessment to calculate the total carbon emissions using the carbon emission factor method for typical 500 kV projects. The results show that in the construction process the production stage contributes the most carbon emissions, with material and equipment production for power transmission accounting for 78% and 14% of the total emissions, respectively. The transportation and construction stage contribute 1% and 7% of the total emissions, respectively. For substations, material and equipment production contribute 67% and 30% of the total emissions, respectively. The transportation and construction phases contribute 1% and 2% of the total emissions. Through the qualitative and quantitative analysis of the carbon emission results, the construction scale and the topography and geology have significant impacts on carbon emissions from power transmission and substation projects. Finally, some targeted recommendations for carbon emission reduction for power transmissions and substations are proposed based on the influencing factors of each stage of the construction.