This article presents a comprehensive study on the mechanics of carbon nanotubes (CNTs) oscillating in CNT bundles. Using the continuum approximation along with Lennard-Jones (LJ) potential function, new semi-analytical expressions in terms of double integrals are presented to evaluate van der Waals (vdW) potential energy and interaction force upon which the equation of motion is directly solved. The obtained potential expression enables one to arrive at a new semi-analytical formula for the exact evaluation of oscillation frequency. Also, an algebraic frequency formula is extracted on the basis of the simplifying assumption of constant vdW force. Based on the present expressions, a thorough study on various aspects of operating frequencies under different system parameters is given, which permits fresh insight into the problem. The strong dependence of oscillation frequency on system parameters, such as the extrusion distance and initial velocity of the core as initial conditions for the motion is indicated. Interestingly, a specific initial velocity is found at which the oscillation frequency is independent of the core length. In addition, a relation between this specific initial velocity and the escape velocity is disclosed.