Background
Idiopathic pulmonary fibrosis (IPF) is a fatal respiratory disease without effective treatments. Mitochondrial dysfunction weakens the ability of mesenchymal stem cells (MSCs) to repair the distal lung epithelium, which is a probable pathogenesis of IPF. In previous research, we found that cinnamaldehyde (CA) can maintain the mitochondrial morphology of MSCs.
Methods
This present study evaluated the effect and mechanism of CA on murine lung MSCs using the hydrogen peroxide model. Antioxidant effects and mitochondrial function were determined using flow cytometry. The mRNA levels of mitochondrial dynamics and the expressions of autophagy-related proteins were also detected.
Results
CA can increase the levels of SOD, MMP and ATP, decrease the rate of ROS and apoptosis, and restore the mitochondrial structure. CA can also improve the mRNA expression of MFN1, MFN2, FIS1, DRP1, OPA1, and PGC-1α, increase the expression of LC3 II and p62 and promote the PINK1/Parkin signaling pathway. Our results demonstrated that CA can control mitochondrial quality and avoid apoptosis, which may be associated with the regulation of the PINK1/Parkin signaling pathway.