The paper presents the results of a study of the charge and energy characteristics of multiply charged ions excited on the surface of a single-element and hydrogen-containing multi-component element targets under the influence of laser radiation with a power density (q=108-1012 W/cm2). It has been experimentally shown that, for all used values of q laser radiation, laser-induced plasma from gas-containing targets is characterized by a lower relative yield (dN/dE) of multi-charged ions with a charge number of Z>+3, compared to the plasma produced on the surface of the single element target. Moreover, the tendency to reduce dN/dE of multi-charged ions of the multi-element target, in comparison with the relative yield of ions from the plasma of the single-element target, is more significant and it depends on the charge of the excited ions. The increase in the charge and energy state, duration, and yield of ions of the heavy component, which occurs with an increase in the content of the light component in the target, has been established. This is explained by a decrease in the efficiency of recombination processes caused by an increase in the expansion velocity of a plasma plume due to a decrease in its average mass.