Hematological malignancies (HMs) encompass a diverse group of blood neoplasms with significant morbidity and mortality. Immunotherapy has emerged as a validated and crucial treatment modality for patients with HMs. Despite notable advancements having been made in understanding and implementing immunotherapy for HMs over the past decade, several challenges persist. These challenges include immune-related adverse effects, the precise biodistribution and elimination of therapeutic antigens in vivo, immune tolerance of tumors, and immune evasion by tumor cells within the tumor microenvironment (TME). Nanotechnology, with its capacity to manipulate material properties at the nanometer scale, has the potential to tackle these obstacles and revolutionize treatment outcomes by improving various aspects such as drug targeting and stability. The convergence of nanotechnology and immunotherapy has given rise to nano-immunotherapy, a specialized branch of anti-tumor therapy. Nanotechnology has found applications in chimeric antigen receptor T cell (CAR-T) therapy, cancer vaccines, immune checkpoint inhibitors, and other immunotherapeutic strategies for HMs. In this review, we delineate recent developments and discuss current challenges in the field of nano-immunotherapy for HMs, offering novel insights into the potential of nanotechnology-based therapeutic approaches for these diseases.