Carbon clusters are challenging to produce and isolate due to their highly reactive nature. One of the strategies for their isolation is to encapsulate the clusters into carbon nanotubes (CNTs) of appropriate radii. Herein, we have investigated the energetics for the encapsulation of the monocyclic carbon rings, [Formula: see text] ([Formula: see text], and [Formula: see text]) into CNTs of various radii using the continuum approximation. The encapsulation is driven by the non-covalent interactions between the carbon rings and the CNTs. The analyzes of the axial forces and the interaction energies at various orientations and positions of centers of mass of the rings with respect to the CNT axes clearly suggested the role of the tube radius in governing the energetics of encapsulation. Estimation of the acceptance and the suction energies as a function of CNT radius led to the prediction that the CNTs with radii of 5.38 Å, 5.83 Å, 6.25 Å, 6.68 Å, 7.07 Å, 7.51 Å, and 7.90 Å can efficiently encapsulate C10, C12, C14, C16, C18, C20, and C22 rings, respectively. In the limit of large tube radii, the numerical results lead to those obtained for carbon ring adsorption on graphene. Furthermore, the continuum approach enabled us to explore the potential energy surfaces thereby arriving at the equilibrium configurations of the rings inside the CNTs. Such an analysis is invaluable because of the enormous computational cost associated with quantum chemical calculations.