The rapid yellowing of the leaves on cut flowers with leafy stems severely limits their vase life and commercial value. In this study, the effect of a composite of multi-walled carbon nanotubes (MWCNTs) and polyvinyl pyrrolidone (PVP) on the longevity of cut Alstroemeria flowers (Alstroemeria hybrida) was investigated to obtain a solution to this problem. A range of MWCNTs/PVP composite concentrations (0, 3, 6, and 9 mg L−1) was applied in a vase solution (for 24 h) as pulse treatments. Our findings indicate that the composite of MWCNTs and PVP exhibits excellent dispersibility in a vase solution. The results demonstrate that a 3 mg L−1 MWCNTs/PVP concentration was the most effective, extending the vase life of cut Alstroemeria flowers by up to 27 days. Pulsing with MWCNTs/PVP delayed the onset of floret abscission and leaf yellowing by 5 and 18 days, respectively. Additionally, when MWCNTs/PVP solution was applied to cut stems, water uptake remained consistently greater than that of the control. Additionally, MWCNTs/PVP increased the total chlorophyll content, soluble protein content, and POX enzyme activity of leaves while decreasing the malondialdehyde (MDA) content. The results indicate that this composite exhibited antimicrobial activity against gram-positive and -negative bacteria, particularly at a concentration of 3 mg L−1. This study demonstrated that adding MWCNTs/PVP to a vase solution of Alstroemeria cut flowers increased their longevity with minimal leaf yellowing symptoms compared to untreated cut stems. As a result, this nanocomposite can be used safely and effectively in vase solutions and in combination with other preservatives.