Paper, as a flexible, low-cost, lightweight, tailorable, environmental-friendly, degradable, and renewable material, is emerging in electronic devices. Especially, many kinds of paper-based (PB) sensors have been reported for wearable applications in recent years. Among them, the PB gas, humidity, and strain sensors are widely studied for monitoring gas, humidity, and strain from the human body and the environment. However, gas, humidity, and strain often coexist and interact, and the paper itself is hydrophilic and flexible, resulting in that it is still challenging to develop high-performance PB sensors specialized for gas, humidity, and strain detections. Therefore, it is necessary to summarize and discuss them systematically. In this review, we focus on summarizing the state-of-art studies of the PB gas, humidity, and strain sensors. Specifically, the fabrications (electrodes and sensing materials) and applications of PB gas, humidity, and strain sensors are summarized and discussed. The current challenges and the potential trends of PB sensors for gas, humidity, and strain detections are also outlined. This review not only can help readers to understand the development status of the PB gas, humidity, and strain sensors but also is helpful for readers to find out and solve the problems in this field through comparative reading.