This paper examines the feasibility of converting a Heavy-Duty (HD) Spark Ignition (SI) Compressed Natural Gas (CNG) engine to biogas fuel. A One-Dimensional (1D) simulation tool was used to model a commercially available HD SI CNG engine. The model was validated by comparing experimental and computed in-cylinder pressure, brake power, fuel, and air mass flow rates. The engine was then modified to use biogas with an injection system based on existing designs from the literature. A Spark Advance (SA) sweep was performed to assess the engine’s performance at full load. The chosen equivalence ratio was 0.85, and the engine speed was 1500 rpm. The Maximum Brake Power (MBP) and Maximum Brake Efficiency (MBE) operating points were identified. Partial load analysis was conducted starting from the MBP conditions. Results in terms of brake power, brake efficiency, and NOx emissions are presented. Conversion to biofuel results in a reduction in power and efficiency of 33% and 4%, respectively, at 1500 rpm and full load conditions. Brake Specific NOx emissions remained comparable. This numerical study demonstrates the feasibility of biogas conversion for HD SI engines, offering a renewable fuel alternative to reduce greenhouse gas emissions, though with trade-offs in power and efficiency.