In this paper, a novel methodological framework for energy hub (EH) planning, considering the correlation between renewable energy source (RES) and demand response (DR) uncertainties, is proposed. Unlike other existing works, our study explicitly considers the potential correlation between the uncertainty of integrated energy system operations (i.e., wind speed, light intensity, and demand response). Firstly, an EH single-objective interval optimization model is established, which aims at minimizing investment and operation costs. The model fully considers the correlation between various uncertain parameters. Secondly, the correlation between uncertainties is dealt with by the interval models of multidimensional parallelism and affine coordinate transformation, which are transformed into a deterministic optimization problem by the interval order relationship and probability algorithm, and then solved by a genetic algorithm. Finally, an experimental case is analyzed, and the results show that the research method in this paper has good engineering practicability. At the same time, different correlations among uncertainties have different influences on integrated energy system planning. Correlation and influence are positively correlated.