The tribological behavior of carbon/silicon bi-layer coatings deposited on a silicon substrate by DC magnetron sputtering was assessed and compared to that of amorphous carbon and silicon coatings. The motivation was to develop a wear resistant coating for silicon using thin layers of amorphous carbon and silicon. Wear tests were conducted by sliding a stainless steel ball against the coating specimens under applied normal loads in the range of 20 * 50 mN. Results showed that the wear rate of the bi-layer coating was strongly dependent on the ratio of thickness between the carbon and silicon layers. The wear rate of the bi-layer coating with 25 nm thick carbon and 102 nm thick silicon layers was about 48 and 20 times lower than that of the single-layer amorphous carbon and amorphous silicon coating, respectively. In addition, the steady-state friction coefficient of the bi-layer coating could be decreased to 0.09 by optimizing the thickness of the layer. Finally, a model for the wear reduction mechanism of the carbon/silicon bi-layer coating was proposed.