bMycobacterium tuberculosis must sense and adapt to host environmental cues to establish and maintain an infection. The twocomponent regulatory system PhoPR plays a central role in sensing and responding to acidic pH within the macrophage and is required for M. tuberculosis intracellular replication and growth in vivo. Therefore, the isolation of compounds that inhibit PhoPR-dependent adaptation may identify new antivirulence therapies to treat tuberculosis. Here, we report that the carbonic anhydrase inhibitor ethoxzolamide inhibits the PhoPR regulon and reduces pathogen virulence. We show that treatment of M. tuberculosis with ethoxzolamide recapitulates phoPR mutant phenotypes, including downregulation of the core PhoPR regulon, altered accumulation of virulence-associated lipids, and inhibition of Esx-1 protein secretion. Quantitative single-cell imaging of a PhoPR-dependent fluorescent reporter strain demonstrates that ethoxzolamide inhibits PhoPR-regulated genes in infected macrophages and mouse lungs. Moreover, ethoxzolamide reduces M. tuberculosis growth in both macrophages and infected mice. Ethoxzolamide inhibits M. tuberculosis carbonic anhydrase activity, supporting a previously unrecognized link between carbonic anhydrase activity and PhoPR signaling. We propose that ethoxzolamide may be pursued as a new class of antivirulence therapy that functions by modulating expression of the PhoPR regulon and Esx-1-dependent virulence.
Mycobacterium tuberculosis is a successful pathogen because it overcomes a variety of obstacles raised by the host immune response. The ability of M. tuberculosis to sense host immune pressures and orchestrate adaptive responses to these cues is essential for pathogen virulence. It follows that the identification of chemical compounds that disrupt the ability of M. tuberculosis to sense and respond to host cues may function to attenuate pathogen virulence.M. tuberculosis uses environmental pH as a cue to modulate its physiology. These pH-dependent adaptations play a central role in M. tuberculosis pathogenesis (1). Transcriptional profiling of M. tuberculosis-infected macrophages identified an M. tuberculosis regulon induced at acidic pH (2) that significantly overlaps the PhoPR two-component regulatory system regulon (3-5), suggesting a role for PhoPR in pH-driven adaptation. phoPR-inactivated M. tuberculosis mutant strains are highly attenuated during mouse and guinea pig infections, supporting that this pathway is a suitable target for new drug development (6, 7).Conventional antimicrobial discovery campaigns seeking to identify bactericidal or bacteriostatic compounds are often performed in vitro. However, many targets required for M. tuberculosis pathogenesis, including environmental sensing pathways, are essential only in vivo and would be missed using standard approaches. Compounds that target in vivo essential bacterial virulence factors are known as antivirulence therapies (8). Antivirulence therapies are advantageous over traditional antibiotics because they preserve e...