Stepwise reaction of W(CO)6 with tetramethylated bicyclic guanidinate ligands, characterized by a central C(N)3 unit joining two fused six-membered rings with CH2CMe2CH2 units spanning two of the nitrogen atoms, allowed isolation of W2(μ-CO)2(μ-TMhpp)2(η(2)-TMhpp)2, 1, a precursor of W2(TMhpp)4Cl2 ( J. Am. Chem. Soc. 2013 , 135 , 17889 ; TMhpp = [(CH2CMe2CH2)2(C(N)3)]). Subsequent heating of 1 followed by reaction with TlPF6 generates [W2(TMhpp)4](PF6)2, 2. Compound 1 has an edge-sharing bioctahedral (ESBO) arrangement with a W2(μ-CO)2(4+) core having semibridging carbonyl groups, while 2 has a paddlewheel structure with a W2(6+) core spanned by four tetramethyl-substituted bicyclic guanidinate ligands. This compound also has hexafluorophosphate anions along the metal-metal bond that are nestled within methylene groups with the aid of a network of weak C-H···F interactions that prevent a close approach of the fluorine atoms to the dimetal unit. Theoretical computations were carried out on ditungsten model complexes supported by three ligand sets: bicyclic guanidinate, guanidinate, and formamidinate. The computations show that the π-accepting ability of the carbonyl groups significantly lowers the energy of the σ* orbital, and thus, the energy falls below that of the δ orbital. This information along with the diamagnetism of both 1 and 2-as shown by the sharp signals in the (1)H NMR spectra that support a lack of unpaired electrons (S = 0)-is consistent with the electronic configuration of σ(2)π(2)σ*(2)δ(2) (π(2)δ(2)) and thus a formal bond order of 2 for 1 and σ(2)π(4) for the triple-bonded W2(6+) core in 2. A comparison of the W-W bond lengths in 2, its chloro precursor W2(TMhpp)4Cl2, and the corresponding analogue W2(hpp)4Cl2 shows a substantial effect from the axially coordinated ligand, distal lone pair in determining the length of the metal-metal bond for these paddlewheel species. The importance of the ligands in tuning the energy level of the metal-metal bonds that may lead to dramatic changes in physical properties is also discussed. It is noteworthy that bicyclic guanidinates with the strongest π-donating ability push upward the energy level of the δ orbital, thus allowing the compounds to be easily oxidized.