This work aims to enhance the dye-removal performance of prepared poly(acrylic acid-co-acrylamide)-modified, deproteinized, natural rubber ((PAA-co-PAM)-DPNR) through incorporation with silver nanoparticles/titanium dioxide. The (PAA-co-PAM)-DPNR was prepared by emulsion-graft copolymerization with a grafting efficiency of 10.20 ± 2.33 to 54.26 ± 1.55%. The composites based on (PAA-co-PAM)-DPNR comprising silver nanoparticles and titanium dioxide ((PAA-co-PAM)-DPNR/Ag-TiO2) were then prepared by latex compounding using the fixed concentration of AgNO3 (0.5 phr) and varying concentrations of TiO2 at 1.0, 2.5, and 5.0 phr. The formation of silver nanoparticles was obtained by heat and applied pressure. The composites had a porous morphology as they allowed water to diffuse in their structure, allowing the high specific area to interact with dye molecules. The incorporation of silver nanoparticles/titanium dioxide improved the compressive modulus from 1.015 ± 0.062 to 2.283 ± 0.043 KPa. The (PAA-co-PAM)-DPNR/Ag-TiO2 composite with 5.0 phr of TiO2 had a maximum adsorption capacity of 206.42 mg/g, which increased by 2.02-fold compared to (PAA-co-PAM)-DPNR. The behavior of dye removal was assessed with the pseudo-second-order kinetic model and Langmuir isotherm adsorption model. These composites can maintain their removal efficiency above 90% for up to five cycles. Thus, these composites could have the potential for dye-removal applications.