This study aims to elucidate the mechanism and potential of Rhizoma alismatis polysaccharides (RAPs) in preventing oxidative damage to human renal proximal tubule epithelial cells.
MethodsThe experimental approach involved incubating HK-2 cells with 100 nm calcium oxalate monohydrate for 24 h to establish a cellular injury model. Protection was provided by RAPs with varying carboxyl group contents: 3.57%, 7.79%, 10.84%, and 15.33%. The safeguarding effect of RAPs was evaluated by analyzing relevant cellular biochemical indicators.
ResultsFindings demonstrate that RAPs exhibit notable antioxidative properties. They effectively diminish the release of reactive oxygen species, lactate dehydrogenase, and malondialdehyde, a lipid oxidation byproduct. Moreover, RAPs enhance superoxide dismutase activity and mitochondrial membrane potential while attenuating the permeability of the mitochondrial permeability transition pore. Additionally, RAPs signi cantly reduce levels of in ammatory factors, including NLRP3, TNF-α, IL-6, and NO. This reduction corresponds to the inhibition of overproduced pro-in ammatory mediator nitric oxide and the caspase 3 enzyme, leading to a reduction in cellular apoptosis. RAPs also display the ability to suppress the expression of the HK-2 cell surface adhesion molecule CD44.
ConclusionsThe observed results collectively underscore the substantial anti-in ammatory and anti-apoptotic potential of all four RAPs. Moreover, their capacity to modulate the expression of cell surface adhesion molecules highlights their potential in inhibiting the formation of kidney stones. Notably, RAP3, boasting the highest carboxyl group content, emerges as the most potent agent in this regard.