There is no convincing evidence of germline mutation manifest as heritable disease in the offspring of humans attributable to ionizing radiation, yet radiation clearly induces mutations in microbes and somatic cells of rodents and humans. Doses to the embryo estimated to be in the range of 0.15-0.2 Gy during the pre-implantation and pre-somite stages may increase the risk of embryonic loss. However, an increased risk of congenital malformations or growth retardation has not been observed in the surviving embryos. These results are primarily derived from mammalian animal studies and are referred to as the "all-or-none phenomenon." The tissue reaction effects of ionizing radiation (previously referred to as deterministic effects) are congenital malformations, mental retardation, decreased intelligence quotient, microcephaly, neurobehavioral effects, convulsive disorders, growth retardation (height and weight), and embryonic and fetal death (miscarriage, stillbirth). All these effects are consistent with having a threshold dose below which there is no increased risk. The risk of cancer in offspring that have been exposed to diagnostic x-ray procedures while in utero has been debated for 55 y. High doses to the embryo or fetus (e.g., >0.5 Gy) increase the risk of cancer. Most pregnant women exposed to x-ray procedures and other forms of ionizing radiation today received doses to the embryo or fetus <0.1 Gy. The risk of cancer in offspring exposed in utero at exposures <0.1 Gy is controversial and has not been fully resolved. Diagnostic imaging procedures using ionizing radiation that are clinically indicated for the pregnant patient and her fetus should be performed because the clinical benefits outweigh the potential oncogenic risks.