We studied the electrophysiological and antiarrhythmic actions of 3,4,quinoline-3,4-dione], a furoquinoline alkaloid derivative, in guinea pig heart preparations. In the perfused whole heart model, HA-7 caused a prolongation in the basic cycle length, ventricular repolarization time, and the atrioventricular (AV) nodal Wenckebach cycle length and prolonged the refractory period of the atrium, AV node, and His-Purkinje system. The atrioventricular conduction interval was also prolonged in a frequency-dependent manner. In isolated hearts, HA-7 significantly raised the threshold for experimental atrial fibrillation and reduced the occurrence of reperfusion-induced ventricular fibrillation. Conventional microelectrode-recording study shows that HA-7, but not d-sotalol, prolonged the action potential duration (APD) and decreased the maximum rate of depolarization in isolated atrial strips. In ventricular papillary muscles, higher concentrations of HA-7 caused a prolongation of APD 90 in a frequency-independent manner, whereas d-sotalol exerted a reverse frequency-dependent action on this parameter. Whole-cell patch clamp results on ventricular myocytes indicate that HA-7 decreased both the slow (I Ks ) (IC 50 ϭ 4.8 M) and fast component (I Kr ) (IC 50 ϭ 1