Purpose: To determine the role of magnetic resonance imaging (MRI)-based metrics to quantify myocardial toxicity following radiotherapy (RT) in human subjects through review of current literature.
Methods: 21 MRI studies published between 2011-2022 were identified from available databases. Patients received chest irradiation with/without other treatments for various malignancies including breast, lung, esophageal cancer, Hodgkinâs, and non-Hodgkinâs lymphoma. In 11 longitudinal studies, the sample size, mean heart dose, and follow-up times ranged from 10-81 patients, 2.0-13.9 Gy, and 0-24 months after RT (in addition to a pre-RT assessment), respectively. In 10 cross-sectional studies, the sample size, mean heart dose, and follow-up times ranged from 5-80 patients, 2.1-22.9 Gy, and 2-24 years from RT completion, respectively. Global metrics of left ventricle ejection fraction (LVEF) and mass/dimensions of cardiac chambers were recorded, along with global/regional values of T1/T2 signal, extracellular volume (ECV), late gadolinium enhancement (LGE), and circumferential/radial/longitudinal strain.
Results: LVEF tended to decline at >20 years follow-up and in patients treated with older RT techniques. Changes in global strain were observed after shorter follow-up (13±2 months) for concurrent chemoradiotherapy. In concurrent treatments with longer follow-up (8.3 years), increases in left ventricle (LV) mass index were correlated with LV mean dose. In pediatric patients, increases in LV diastolic volume were correlated with heart/LV dose at 2 years post-RT.
Regional changes were observed earlier post-RT. Dose-dependent responses were reported for several parameters, including: increased T1 signal in high-dose regions, a 0.136% increase of ECV per Gy, progressive increase of LGE with increasing dose at regions receiving >30 Gy, and correlation between increases in LV scarring volume and LV mean/V10/V25 Gy dose.
Conclusion: Global metrics only detected changes over longer follow-up, in older RT techniques, in concurrent treatments, and in pediatric patients. In contrast, regional measurements detected myocardial damage at shorter follow-up and in RT treatments without concurrent treatment and had greater potential for dose-dependent response. The early detection of regional changes suggests the importance of regional quantification of RT-induced myocardial toxicity at early stages, before damage becomes irreversible. Further works with homogeneous cohorts are required to examine this matter.