SYSTEMS BIOLOGY IS "the study of the interactions between the components of biological systems and how these interactions give rise to the function and behavior of that system" (ref. Wikipedia). Ideally the practice of systems biology is a cyclical process that alternates between stages of mathematical modeling and experimentation. A model is a quantitative description of the system. By solving the model, the "forward problem," we can make predictions about the behavior of the system that can be verified experimentally. Based on the outcome of the experiment, the model may be refined and the cycle begins again. In essence, systems biology is an approach to solving an "inverse problem": given observations of a system in response to perturbations we attempt to deduce or infer the functional properties of the system. Inverse problem are notoriously hard to solve, and the key to success is to choose a set of perturbations that provides good discrimination among alternative models. When the perturbations in a systems biology experiment are genetic variants, we refer to the approach as systems genetics. Llamas et al. (2), in this issue of Physiological Genomics, provide us with a simple but compelling demonstration of systems genetics in practice.For sake of illustration, consider a simplified model of the "system" of blood pressure regulation. In our initial model, blood pressure (BP) is the product of cardiac output (CO) and peripheral resistance (PR). Thus BP ϭ CO * PR. We know that genetic factors affect blood pressure and would like to extend the simple model by adding genetic effects on cardiac output, peripheral resistance, or both. We are able to measure blood pressure and cardiac output but cannot measure both on the same animal. Direct measurements of peripheral resistance are not available to us. Fortunately we have access to a panel of recombinant inbred (RI) mouse strains with a wide range of blood pressures. We measure blood pressure and cardiac output on different, but genetically identical, animals and study the relationships of the measured traits at the level of the strain means. Moreover, the RI panel has been densely genotyped and extensively phenotyped by other researchers, opening the possibility of extending our "system" to include other measured traits. We can also map the genetic loci [quantitative trait loci (QTL)] associated with blood pressure, at no extra cost.Suppose that we have mapped two QTL. Both are associated with blood pressure but only one QTL (Q1) has an effect on cardiac output. According to our model, the other QTL must act on blood pressure through the peripheral resistance pathway. The model is illustrated graphically in Fig. 1. The estimated allelic effects provide quantitative parameters with which one can make predictions. The effect of a "B" genotype at Q1 is to reduce cardiac output by a factor of 0.9 relative to the "A" genotype, with a corresponding decrease in blood pressure. The "B" genotype at Q2, acting through its effect on peripheral resistance, increases blood ...