Functional adaptation of cardiac cells in response to haemodynamic load requires dynamic alteration of gene expression. In this study, we examined early changes in gene expression following stretch in myocytes and fibroblasts isolated from neonatal rat hearts. In the first hour of biaxially applied static stretch, the changes in expression of immediate-early genes, such as c-fos, c-jun and fra-1, were quantified. The expression of the atrial natriuretic peptide (ANP) gene in myocytes was measured as an indication of the hypertrophic response. In stretched myocytes, expression of c-fos and ANP increased transiently to 227% and 176% respectively after 30 min stretch, whereas c-jun and fra-1 expression decreased in the 1st hour of stretch. In stretched fibroblasts the expression of c-fos and fra-1 increased transiently to maxima of 145% and 146% respectively after 30 min stretch, whereas c-jun expression did not change significantly. To study the indirect effects of stretch, as an indication of cross-talk between cardiac cells, stationary myocytes and fibroblasts were incubated with stretch-conditioned medium (CM) from stretched (0-60 min) myocytes and fibroblasts. CM from stretched myocytes reduced c-fos and induced c-jun expression in myocytes and fibroblasts, reduced fra-1 expression in myocytes but induced fra-1 expression in fibroblasts. CM from stretched fibroblasts induced c-fos expression and had little effect on c-jun expression in myocytes and fibroblasts, induced the fra-1 expression in myocytes but had little effect on fra-1 expression in fibroblasts. CM from myocytes and CM from fibroblasts induced ANP expression in myocytes to 206% and 120% respectively after 45 min stretch. Static stretch of myocytes and fibroblasts appears to stimulate, within 1 h, secretion of cell type-specific factors that participate in the regulation of proto-oncogene and ANP expression of stationary myocytes and fibroblasts. These early changes in gene transcription suggest that stretch of the myocardium initiates intracellular gene expression as well as cross-talk between the cell types.