Background: Time-delay indexes are limited in predicting the response to cardiac resynchronization therapy (CRT), partly because they do not reflect the residual left ventricular (LV) contractility. We computed a novel index of LV contractility loss due to dyssynchrony (the strain rate (SR) dispersion index: SRDI) by using the speckletracking SR and compared the efficacy of the SRDI, time-delay indexes, and strain delay index (SDI), the previously reported index of wasted energy due to dyssynchrony, for predicting the acute response to CRT.
Methods and Results:Echocardiography was performed in 19 heart failure patients (LV ejection fraction (EF) 25±6%) before and 2 weeks after CRT. The standard deviation of time to peak velocity, or strain, was calculated as time-delay indexes. The SRDI was calculated as the average of segmental peak systolic SR minus global peak systolic SR. Longitudinal SDI (L-SDI), longitudinal SRDI (L-SRDI), and circumferential SRDI (C-SRDI) significantly correlated with the change in global longitudinal strain (∆global LSt), whereas the time-delay indexes did not. Although the time-delay indexes were comparable between responders (∆global LSt ≥0.3%) and nonresponders, the L-SDI, L-SRDI, and C-SRDI were greater in responders. The area under the receiver operating characteristic curve of the L-SRDI, L-SDI, and C-SRDI for predicting responders was 0.89, 0.81, and 0.78, respectively.
Conclusions:The SRDI correlated fairly well with an improvement in global LV systolic function after CRT. (Circ J 2011; 75: 2167 - 2175