Heart failure is the leading cause of death in western countries and is often associated with impaired Ca(2+) handling in the cardiomyocyte. In fact, cardiomyocyte relaxation and contraction are tightly controlled by the activity of the cardiac sarco(endo)plasmic reticulum (ER/SR) Ca(2+) pump SERCA2a, pumping Ca(2+) from the cytosol into the lumen of the ER/SR. This review addresses three important facets that control the SERCA2 activity in the heart. First, we focus on the alternative splicing of the SERCA2 messenger, which is strictly regulated in the developing heart. This splicing controls the formation of three SERCA2 splice variants with different enzymatic properties. Second, we will discuss the role and regulation of SERCA2a activity in the normal and failing heart. The two well-studied Ca(2+) affinity modulators phospholamban and sarcolipin control the activity of SERCA2a within a narrow window. An aberrantly high or low Ca(2+) affinity is often observed in and may even trigger cardiac failure. Correcting SERCA2a activity might therefore constitute a therapeutic approach to improve the contractility of the failing heart. Finally, we address the controversies and unanswered questions of other putative regulators of the cardiac Ca(2+) pump, such as sarcalumenin, HRC, S100A1, Bcl-2, HAX-1, calreticulin, calnexin, ERp57, IRS-1, and -2.