The db/db mouse is a well-established model of diabetes. Previous reports have documented contractile dysfunction (i.e., cardiomyopathy) in these animals, although the extant literature provides limited insights into cardiac structure and function as they change over time. To better elucidate the natural history of cardiomyopathy in db/db mice, we performed cardiac magnetic resonance (CMR) scans on these animals. CMR imaging was conducted with a 4.7-T magnet on female db/db mice and control db/ϩ littermates at 5, 9, 13, 17, and 22 wk of age. Gated gradient echo sequences were used to obtain cineographic short-axis slices from apex to base. From these images left ventricular (LV) mass (LVM), wall thickness, end-diastolic volume (LVEDV), and ejection fraction (LVEF) were determined. 18 F]FDG metabolic imaging showed a 40% decrease in glucose uptake in db/db mice. Furthermore, contractile dysfunction was observed in 15-wk db/db mice undergoing pressure-volume loops. Finally, real-time quantitative PCR revealed an age-dependent recapitulation of the fetal gene program, consistent with a myopathic process. In summary, as assessed by CMR, db/db mice develop characteristic structural and functional changes consistent with cardiomyopathy. diabetes mellitus; insulin resistance; heart failure; metabolism CONGESTIVE HEART FAILURE (CHF) is a significant yet often underappreciated complication of diabetes mellitus (25). While atherosclerotic coronary artery disease is highly prevalent and likely responsible for CHF in many diabetic patients, findings from several large-scale heart failure clinical trials reveal a 16 -20% prevalence of diabetes in patients with nonischemic cardiomyopathy (9). Moreover, an analysis of hospital discharge data showed a 27% prevalence of diabetes in patients discharged with idiopathic cardiomyopathy, compared with 18% for control subjects (13). Collectively these data suggest an alternative mechanism for CHF in diabetics-one independent of the effects of epicardial coronary disease. However, studies investigating this unique form of "diabetic cardiomyopathy" (51) have failed to establish a unifying mechanistic basis for this phenomenon.The C57BL/KLS-lepr db /lepr db (db/db) mouse, which has a mutation in the leptin receptor, is a well-established animal model of Type 2 diabetes mellitus (19). Leptin resistance results in hyperphagia and weight gain from birth. Homozygous db/db mice become noticeably obese by 3-4 wk of age and develop hyperglycemia at 4 -8 wk. Serum insulin levels increase as early as 10 -14 days, peak at 6 -8 wk, then decrease precipitously afterward (although db/db mice continue to be hyperinsulinemic throughout life). This drop, which is believed to be secondary to pancreatic islet cell dysfunction, further exacerbates the hyperglycemia.In addition to these characteristic phenotypic changes, db/db mice also develop cardiomyopathy. Metabolic experiments using cultured db/db cardiomyocytes have shown impaired glucose oxidation as early as 6 wk of age (1). Echocardiographic studie...