Our previous study has shown that activating peripheral μ-receptors is necessary for switching the bronchopulmonary C-fibers (PCFs)-mediated rapid shallow breathing (RSB) into an apnea by systemic administration of fentanyl. The brainstem nuclei, such as the medial nucleus tractus solitarius (mNTS) and the Pre-Botzinger Complex (PBC), are required for completing the PCF-mediated respiratory reflexes. Moreover, these areas contain abundant μ-receptors and their activation prolongs expiratory duration (TE). Thus, we asked if central μ-receptors, especially those in the mNTS and PBC, are involved in fully expressing this RSB-apnea switch by fentanyl. In anesthetized rats, the cardiorespiratory responses to right atrial injection of phenylbiguanide (PBG, 3–6 μg/kg) were repeated after: 1) fentanyl (iv), a μ-receptor agonist, alone (8 μg/kg, iv); 2) fentanyl following microinjection of naloxone methiodide (NXM, an opioid receptor antagonist) into the cisterna magna (10 μg/4 μl); 3) the bilateral mNTS (10 mM, 20 nl); or 4) PBC (10 mM, 20 nl). Our results showed that PBG shortened TE by 37 ± 6 % (RSB, from 0.41 ± 0.05 to 0.26 ± 0.03 s, P < 0.01), but it markedly prolonged TE by 5.8-fold (an apnea, from 0.50 ± 0.04 s to 2.9 ± 0.57 s, P < 0.01) after fentanyl (iv). Pretreatment with NXM injected into the cisterna magna or the PBC, but not the mNTS, prevented the fentanyl-induced switch. This study, along with our previous results mentioned above, suggests that although peripheral μ-receptors are essential for triggering the fentanyl-induced switch, central μ-receptors, especially those in the PBC, are required to fully exhibit such switch.