Pluripotent stem cells provide the opportunity to study human cardiogenesis in vitro, and are a renewable source of tissue for drug testing and disease models, including replacement cardiomyocytes that may be a useful treatment for heart failure. Typically, differentiation is initiated by forming spherical cell aggregates wherein an extraembryonic endoderm (ExE) layer develops on the surface. Given that interactions between endoderm and mesoderm influence embryonic cardiogenesis, we examined the impact of human embryonic stem cell (hESC) aggregate size on endoderm and cardiac development. We first demonstrated aggregate size control by micropatterning hESC colonies at defined diameters and transferring the colonies to suspension. The ratio of endoderm (GATA-6) to neural (PAX6) gene and protein expression increased with decreasing colony size. Subsequently, maximum mesoderm and cardiac induction occurred in larger aggregates when initiated with endoderm-biased hESCs (high GATA-6:PAX6), and in smaller aggregates when initiated with neural-biased hESCs (low GATA-6:PAX6). Additionally, incorporating micropatterned aggregates in a stirred suspension bioreactor increased cell yields and contracting aggregate frequency. We next interrogated the relationship between aggregate size and endoderm and cardiac differentiation efficiency in sizecontrolled aggregates, generated using forced aggregation, in defined cardiogenic medium.