Cardiac fibrosis critically injured the cardiac structure and function of the hypertensive patients. However, the anti‐fibrotic strategy is still far from satisfaction. This study aims to determine the effect and mechanism of Pirfenidone (PFD), an anti‐lung fibrosis medicine, in the treatment of cardiac fibrosis and heart failure induced by pressure overload. Male C57BL/6 mice were subjected to thoracic aorta constriction (TAC) or sham surgery with the vehicle, PFD (300 mg/kg/day) or Captopril (CAP, 20 mg/kg/day). After 8 weeks of surgery, mice were tested by echocardiography, and then sacrificed followed by morphological and molecular biological analysis. Compared to the sham mice, TAC mice showed a remarkable cardiac hypertrophy, interstitial and perivascular fibrosis and resultant heart failure, which were reversed by PFD and CAP significantly. The enhanced cardiac expression of TGF‐β1 and phosphorylation of Smad3 in TAC mice were both restrained by PFD. Cardiac fibroblasts isolated from adult C57BL/6 mice were treated by Angiotensin II, which led to significant increases in cellular proliferation and levels of α‐SMA, vimentin, TGF‐β1 and phosphorylated TGF‐β receptor and Smad3. These changes were markedly inhibited by pre‐treatment of PFD. Collectively, PFD attenuates myocardial fibrosis and dysfunction induced by pressure overload via inhibiting the activation of TGF‐β1/Smad3 signalling pathway.