Na+ and Cl− movement across the intestinal epithelium occurs by several interconnected mechanisms: (1) nutrient coupled Na+ absorption; (2) electroneutral NaCl absorption; (3) electrogenic Cl− secretion by CFTR; and (4) electrogenic Na+ absorption by ENaC. All of these transport modes require a favorable electrochemical gradient maintained by the basolateral Na+-K+-ATPase, a Cl− channel and K+ channels. Electroneutral NaCl absorption is observed from the small intestine to distal colon. This transport is mediated by apical Na+/H+ (NHE2/3) and Cl−/HCO3
− (Slc26a3/a6, others) exchangers that provide the major route of NaCl absorption. Electroneutral NaCl absorption and Cl− secretion by CFTR are oppositely regulated by the autonomic nerve system, immune system, and endocrine system via PKAα, PKCα, cGKII, and/or SGK1. This integrated regulation requires the formation of macromolecular complexes, which mediated by NHERF family of scaffold proteins, and involve internalization of NHE3. Using knockout mice and human mutations, a more detailed understanding of the integrated as well as subtle regulation of electroneutral NaCl absorption by the mammalian intestine has emerged.