Aging is associated with reductions in gray matter volume and cortical thickness. One factor that may play a role in mitigating age-associated brain decline is cardiorespiratory fitness (CRF). Although previous work has identified a positive association between CRF and gray matter volume, the relationship between CRF and cortical thickness, which serves as a more sensitive indicator of gray matter integrity, has yet to be assessed in healthy young and older adults. To address this gap in the literature, 32 young and 29 older adults completed treadmill-based progressive maximal exercise testing to assess CRF (peak VO2), and structural magnetic resonance imaging (MRI) to determine vertex-wise surface-based cortical thickness metrics. Results indicated a significant CRF by age group interaction such that Peak VO2 was associated with thicker cortex in older adults but with thinner cortex in young adults. Notably, the majority of regions demonstrating a positive association between peak VO2 and cortical thickness in older adults overlapped with brain regions showing significant age-related cortical thinning. Further, when older adults were categorized as high or low fit based on normative data, we observed a stepwise pattern whereby cortex was thickest in young adults, intermediate in high fit older adults and thinnest in low fit older adults. Overall, these results support the notion that CRF-related neuroplasticity may reduce although not eliminate age-related cortical atrophy.