Heart rate (HR) and systolic (SBP), diastolic (DBP) and mean (MBP) blood pressure were recorded by biotelemetry in nine conscious unrestrained sloths for 1 min every 15 min over a 24-h period. The animals were allowed to freely move in an acoustically isolated and temperature-controlled (24 ± 1ºC) experimental room with light-dark cycle (12/12 h). Behavior was closely monitored through a unidirectional visor and classified as resting (sitting or suspended), feeding (chewing and swallowing embauba leaves, Cecropia adenops), or locomotor activity around the tree trunk or on the room floor. Locomotor activity caused statistically significant increases in SBP (+8%, from 121 ± 22 to 131 ± 18 mmHg), DBP (+7%, from 86 ± 17 to 92 ± 10 mmHg), MBP (+8%, from 97 ± 19 to 105 ± 12 mmHg), and HR (+14%, from 84 ± 15 to 96 ± 15 bpm) compared to resting values, indicating a possible major influence of the autonomic nervous system on the modulation of cardiac function during this behavior. During feeding, the increase in blood pressure was even higher (SBP +27%, from 119 ± 21 to 151 ± 21 mmHg; DBP +21%, from 85 ± 16 to 103 ± 15 mmHg; MBP +24%, from 96 ± 17 to 119 ± 17 mmHg), while HR remained at 14% (from 84 ± 15 to 96 ± 10 bpm) above resting values. The proportionally greater increase in blood pressure than in HR during feeding suggests an increase in peripheral vascular resistance as part of the overall response to this behavior.