Coronary heart disease is a major cause of death in the western world. Although essential for successful recovery, reperfusion of ischemic myocardium is inevitably associated with reperfusion injury. To investigate a potential protective role of ADAMTS13, a protease cleaving von Willebrand factor multimers, during myocardial ischemia/reperfusion, we used a mouse model of acute myocardial infarction. We found that Adamts13 ؊/؊ mice developed larger myocardial infarctions than wild-type control mice, whereas treatment of wild-type mice with recombinant human ADAMTS13 (rhADAMTS13) led to smaller infarctions. The protective effect of ADAMTS13 was further confirmed by a significant reduction of cardiac troponin-I release and less myocardial apoptosis in mice that received rhADAMTS13 compared with controls. Platelets adherent to the blood vessel wall were observed in few areas in the heart samples from mice treated with vehicle and were not detected in samples from mice treated with rhADAMTS13. However, we observed a 9-fold reduction in number of neutrophils infiltrating ischemic myocardium in mice that were treated with rhADAMTS13, suggesting a potent anti-inflammatory effect of ADAMTS13 during heart injury. Our data show that ADAMTS13 reduces myocardial ischemia/reperfusion injury in mice and indicate that rhADAMTS13 could be of therapeutic value to limit myocardial ischemia/reperfusion injury. (Blood. 2012;120(26):5217-5223)
IntroductionCoronary heart disease is the leading cause of death in the western world with approximately 1 million myocardial infarctions (MIs) each year just in the United States. 1,2 Acute myocardial infarction (AMI) is caused by thrombotic occlusion of a coronary artery. Although rapid restoration of the coronary circulation is critical for successful treatment, reperfusion itself exacerbates injury of previously ischemic myocardium. 1 The exact mechanisms of myocardial ischemia/reperfusion (MI/R) injury are not fully understood. 1 Given that cardiac ischemia is either unpredictable (MI) or inevitable (in patients undergoing cardioplegic arrest), there is great interest in developing strategies to minimize injury. von Willebrand factor (VWF) and its cleaving protease ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type-1 motif, member 13) play a pivotal role in platelet adhesion and thrombus formation. By specifically cleaving the VWF A2 domain, ADAMTS13 digests the most thrombogenic ultra-large VWF multimers (UL-VWF) into smaller, less hemostatically active VWF molecules. In addition, ADAMTS13's action on VWF downregulates inflammatory responses. As a result, using experimental mouse models, ADAMTS13 was shown to reduce both thrombosis and inflammation, including atherosclerosis. [3][4][5] An increasing amount of clinical evidence points to the possibility that VWF and ADAMTS13 are involved in MI pathogenesis. 6 To test this experimentally, we used a mouse model of acute myocardial infarction. Using mice deficient in ADAMTS13 and treating wild-type mice with human rhADAM...