2014
DOI: 10.1080/00207543.2014.922709
|View full text |Cite
|
Sign up to set email alerts
|

CARI – a heuristic approach to machine-part cell formation using correlation analysis and relevance index

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
5
0
2

Year Published

2015
2015
2024
2024

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 18 publications
(7 citation statements)
references
References 44 publications
0
5
0
2
Order By: Relevance
“…GT algorithms can be used to group similar parts or machines [41,42], meaning that GT provides a method of sorting machines into machine cells and parts into part families [43][44][45][46][47][48][49]. Several algorithms have been developed to solve the component standardization problem, such as heuristics [50][51][52][53][54][55], genetic algorithms [56][57][58][59][60], and closed neighbor algorithms [43,44,61].…”
Section: Gtmentioning
confidence: 99%
“…GT algorithms can be used to group similar parts or machines [41,42], meaning that GT provides a method of sorting machines into machine cells and parts into part families [43][44][45][46][47][48][49]. Several algorithms have been developed to solve the component standardization problem, such as heuristics [50][51][52][53][54][55], genetic algorithms [56][57][58][59][60], and closed neighbor algorithms [43,44,61].…”
Section: Gtmentioning
confidence: 99%
“…Zolfaghari et al [14] carried out a comparative study of effectiveness of GA, SA, and tabu search in cell formation problems and they found that SA is superior to other existing methods. Recently, hybrid heuristics and meta-heuristics are being applied in MPCF problems such as hybrid grouping GA (HGGA) [16], randomized greedy algorithm from scratch by partially (GRASP) [17], hybrid GA (HGA) [18], correlation analysis and relevance index (CARI) [19], hybrid grouping based PSO (HGBPSO) [15]. The methodology of GRASP was first introduced by Feo and Resende [20].…”
Section: Literature Reviewmentioning
confidence: 99%
“…• HGGA-hybrid grouping genetic algorithm [16] • SACF-simulated annealing to cell formation [11] • GLCA-grouping league championship algorithm [26] • HGBPSO-hybrid grouping based PSO [15] • CARI-correlation analysis and relevance index [19] • GRASP-randomized greedy algorithm from scratch by partially [17] TABLE IV shows the grouping efficacies of above mentioned methods and the proposed GA for the all problems. It is seen from the TABLE IV that comparing with the existing algorithms, the proposed GA produces improved or same GC for 16 problems, whereas, it is inferior in solution quality for only 4 problem sets.…”
Section: F Adopted Parametersmentioning
confidence: 99%
“…El modelo presentado en [19], busca la conformación de equipos en ambientes educativos y grupos de investigación donde no se requiera un líder y donde una de las premisas es que todos los integrantes de un equipo tengan un conocimiento similar respecto a un recurso o temática. A partir del modelo Machine-Part Cell Formation (MPCF) [56], se hace una extensión con el fin de aplicarlo al ámbito educativo y de investigación. Un algoritmo genético de agrupación es utilizado en la conformación de los equipos.…”
Section: Página 27unclassified
“…Un grupo de tecnología representa una unidad organizacional que se responsabiliza de una familia de productos. El trabajo presentado emplea el modelo denominado Machine-Part Cell Formation (MPCF) [56], donde máquinas y partes son empleadas en un proceso de fabricación. El objetivo es maximizar el uso de las máquinas en las celdas y minimizar el movimiento de las partes entre celdas.…”
Section: Pontificia Universidad Javerianaunclassified