Streptococcus sanguis isolated from human dental plaque were grown in Todd-Hewitt broth. Cells were collected by centrifugation and lyophilized after extensive washing with water. The cell-associated glucosyltransferase (GTase) activities of S. sanguis strains were assayed with ['4C]sucrose. Strain differences in GTase activity were significant within the same serotype or biotype or both. The ability of S. sanguis cells to adhere to smooth glass surfaces was generally weak, irrespective of significant cell-associated GTase activity synthesizing water-insoluble, gel-like glucans. Resting cells of most S. sanguis strains bound extracellular GTase from Streptococcus mutans strain B13 (serotype d), resulting in the strong adherence of the S. sanguis cells to smooth glass surfaces in the presence of sucrose. Conversely, S. mutans B13 cells also could bind extracellular GTase from some strains of S. sanguis examined. The sucrose-dependent adherence of S. mutans cells was not altered, although S. sanguis strains from which the extracellular GTases were obtained did not produce significant adherence in the presence of sucrose. In view of these findings, it was suggested that S. mutans GTase could affect the adherence of S. sanguis to smooth tooth surfaces in the oral cavity.