2020
DOI: 10.48550/arxiv.2011.12624
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation

Abstract: In this paper, we obtain new Carleman estimates for a class of variable coefficient degenerate elliptic operators whose constant coefficient model at one point is the so called Baouendi-Grushin operator. This generalizes the results obtained by the two of us with Garofalo in [9] where similar estimates were established for the "constant coefficient" Baouendi-Grushin operator. Consequently, we obtain: (i) a Bourgain-Kenig type quantitative uniqueness result in the variable coefficient setting; (ii) and a strong… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 38 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?