“…Observe that, if k is nondegenerate, the spaces L 2 1 k (0, 1), H 1 1 k (0, 1) and H 2 1 k (0, 1) (or H 2 1 k ,x0 (0, 1)) coincide, respectively, with L 2 (0, 1), H 1 0 (0, 1) and H 2 (0, 1) ∩ H 1 0 (0, 1). Denoting by H 2 1 k (0, 1) the space H 2 1 k (0, 1) or H 2 1 k ,x0 (0, 1), we have, as in [13], [14] or [31], that the operator…”