Neurodegenerative diseases (NDs) constitute a global challenge to human health and an important social and economic burden worldwide, mainly due to their growing prevalence in an aging population and to their associated disabilities. Despite their differences at the clinical level, NDs share fundamental pathological mechanisms such as abnormal protein deposition, intracellular Ca2+ overload, mitochondrial dysfunction, redox homeostasis imbalance and neuroinflammation. Although important progress is being made in deciphering the mechanisms underlying NDs, the availability of effective therapies is still scarce. Carnosine is a natural endogenous molecule that has been extensively studied during the last years due to its promising beneficial effects for human health. It presents multimodal mechanisms of action, being able to exert antioxidant, anti-inflammatory and anti-aggregate activities, among others. Interestingly, most NDs exhibit oxidative and nitrosative stress, protein aggregation and inflammation as molecular hallmarks. In this review, we discuss the neuroprotective functions of carnosine and its implications as a therapeutic strategy in different NDs. We summarize the existing works that study alterations in carnosine metabolism in Alzheimer’s disease and Parkinson’s disease, the two most common NDs. In addition, we review the beneficial effect that carnosine supplementation presents in models of such diseases as well as in aging-related neurodegeneration.