Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The toxic element arsenic interacts with the beneficial element silicon at many levels of the plant metabolism. The ability of the tomato plant to take up and translocate As into its fruit has risen concerns that it could facilitate the entry of this element into the human food chain above the admitted level. Here, the fruit of two contrasting tomato cultivars, Aragon and Gladis, were evaluated following exposures of either 48 h or 14 days to As-contaminated irrigation water, with or without supplementary Si. The focus was on selected biochemical stress response indicators to dissect metabolic fruit reprogramming induced by As and Si. A multivariate statistical approach was utilized to establish the relationship between tissue As and Si concentrations and selected biochemical aspects of the stress response mechanisms to identify a set of relevant stress response descriptors. This resulted in the recognition of strong cultivar and temporal effects on metabolic and biochemical stress parameters following the treatments. In this paper the metabolic changes in H2O2 content, lipid peroxidation, lycopene and carotenoids content, ascorbate and GSH redox state, total phenolics, ABTS and DPPH radicals inhibition were in favor of an oxidative stress. The significance of some of these parameters as reliable arsenic exposition biomarkers is discussed in the context of the limited knowledge on the As-induced stress response mechanisms at the level of the ripening fruit which presents a distinctive molecular background dissimilar from roots and shoots.
The toxic element arsenic interacts with the beneficial element silicon at many levels of the plant metabolism. The ability of the tomato plant to take up and translocate As into its fruit has risen concerns that it could facilitate the entry of this element into the human food chain above the admitted level. Here, the fruit of two contrasting tomato cultivars, Aragon and Gladis, were evaluated following exposures of either 48 h or 14 days to As-contaminated irrigation water, with or without supplementary Si. The focus was on selected biochemical stress response indicators to dissect metabolic fruit reprogramming induced by As and Si. A multivariate statistical approach was utilized to establish the relationship between tissue As and Si concentrations and selected biochemical aspects of the stress response mechanisms to identify a set of relevant stress response descriptors. This resulted in the recognition of strong cultivar and temporal effects on metabolic and biochemical stress parameters following the treatments. In this paper the metabolic changes in H2O2 content, lipid peroxidation, lycopene and carotenoids content, ascorbate and GSH redox state, total phenolics, ABTS and DPPH radicals inhibition were in favor of an oxidative stress. The significance of some of these parameters as reliable arsenic exposition biomarkers is discussed in the context of the limited knowledge on the As-induced stress response mechanisms at the level of the ripening fruit which presents a distinctive molecular background dissimilar from roots and shoots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.