Isopentenyl-diphosphate:dimethylallyl-diphosphate isomerase (EC 5.3.3.2) catalyzes the 1,3-allylic rearrangement of the homoallylic substrate isopentenyl diphosphate (IPP) to its allylic isomer, dimethylallyl diphosphate (DMAPP). Incubation of yeast IPP isomerase with 3-methyl-3,4-epoxybutyl diphosphate (EIPP) resulted in a time-dependent first-order loss of activity characteristic of an active-site-directed irreversible process, where k2 = 0.63 +/- 0.10 min-1 and KI = 0.37 +/- 0.11 microM. A 1:1 covalent E-I complex was formed upon incubation with [1-14C]EIPP. The inhibited enzyme was treated with trypsin to give two radioactive fragments, which were purified by reversed-phase HPLC on a C18 column. The modified amino acid in each fragment was identified as C139 by sequencing the radiolabeled peptides. Incubation of IPP isomerase with [2,4,5-13C3]EIPP gave a 13C-labeled E-I complex. A 1H-13C heteronuclear multiquantum correlation spectrum had strong cross-peaks at 1.2/28 and 2.9/48 ppm, which we assigned to the labeled methyl group and C(4) methylene, respectively, of the inhibitor. In addition, a weak signal at 2.17/42 ppm may be from the C(2) methylene. Comparison of these chemical shifts with those of a synthetic adduct isolated from treatment of EIPP with cysteine indicates C139 attacks C(4) of EIPP to generate a thioether linkage between the enzyme and the inhibitor.