Abstract. The objective of this review is to describe the current status of several intravaginal anti-HIV microbicidal delivery systems these delivery systems and microbicidal compounds in the context of their stage within clinical trials and their potential cervicovaginal defence successes. The global Human Immuno-Deficiency Virus (HIV) pandemic continues to spread at a rate of more than 15,000 new infections daily and sexually transmitted infections (STIs) can predispose people to acquiring HIV infection. Male-to-female transmission is eight times more likely to occur than female-to-male transmission due to the anatomical structure of the vagina as well as socio-economic factors and the disempowerment of women that renders them unable to refuse unsafe sexual practices in some communities. The increased incidence of HIV in women has identified the urgent need for efficacious and safe intravaginal delivery of anti-HIV agents that can be used and controlled by women. To meet this challenge, several intravaginal anti-HIV microbicidal delivery systems are in the process of been developed. The outcomes of three main categories are discussed in this review: namely, dual-function polymeric systems, non-polymeric systems and nanotechnology-based systems. These delivery systems include formulations that modify the genital environment (e.g. polyacrylic acid gels and lactobacillus gels), surfactants (e.g. sodium lauryl sulfate), polyanionic therapeutic polymers (e.g. carageenan and carbomer/lactic acid gels), proteins (e.g. cyanovirin-N, monoclonal antibodies and thromspondin-1 peptides), protease inhibitors and other molecules (e.g. dendrimer based-gels and the molecular condom). Intravaginal microbicide delivery systems are providing a new option for preventing the transmission of STIs and HIV.