2006
DOI: 10.1063/1.2337000
|View full text |Cite
|
Sign up to set email alerts
|

Carrier storage time of milliseconds at room temperature in self-organized quantum dots

Abstract: sowohl optische als auch elektrische Ladungsträgerinjektion in die Quantenpunkte. Obwohl diese Ansätze erfolgreich den Speichereffekt in quantenpunktbasierten Speicherstrukturen demonstrierten, ist eine Kombination aus elektrischer und optischer Ansteuerung der Speicherzelle mit erheblichem technologischen Aufwand verbunden. Ein rein elektrischer Zugriff auf die Speicherfunktionen gilt als unumgänglich für eine industrielle Weiterentwicklung einer Speicherzelle auf Basis von Quantenpunkten. Speicherstrukturen,… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

2
18
0

Year Published

2006
2006
2019
2019

Publication Types

Select...
5
2
1

Relationship

1
7

Authors

Journals

citations
Cited by 32 publications
(20 citation statements)
references
References 36 publications
2
18
0
Order By: Relevance
“…Under a reverse bias, the discharging of the QDs is a process in which all the confined holes emit out of the dots due to thermal activation. The thermal emission rate of holes is e p [14], [15] …”
Section: Resultsmentioning
confidence: 99%
“…Under a reverse bias, the discharging of the QDs is a process in which all the confined holes emit out of the dots due to thermal activation. The thermal emission rate of holes is e p [14], [15] …”
Section: Resultsmentioning
confidence: 99%
“…While a variety of QD-based photonic devices including lasers [31,32], optical amplifiers [33,34], optical memories [35,36] and switches [17,37] have been successfully demonstrated, their dense integration has been hindered by intrinsic material problems. The two most significant of these are: (1) the inhomogeneous broadening of optical spectra which is a natural consequence of self-assembly, (2) the small cross-section and short interaction length of QDs when interacting with light.…”
Section:  High Thermal Stabilitymentioning
confidence: 99%
“…Following other papers in which quantum-dot parameters were extracted by DLTS [4,5], we assume here that the rate of carrier emission from a trap is e = τ m -1 ~ σT 2 exp(-E a /kT), where σ is the carrier capture cross-section of the trap, k is the Boltzmann constant, and T is the measurement temperature. Each peak was observed in a broad temperature range, making it possible to extract from the Arrhenius plots shown in Fig.…”
mentioning
confidence: 99%