We have investigated contact and channel resistances of organic field-effect transistors (FETs) based on benzodithiophene (BDT)-dimer films deposited on thin pentacene layers used as crystallinity control layers (CCLs). The contact resistance of source/drain electrodes made of conductive organic films instead of Au films has been reduced for pentacene-CCL/BDT-dimer FETs; the carrier mobility has been improved to 1.2 cm2 V−1 s−1 at maximum. Because the channel resistance of the pentacene-CCL/BDT-dimer FETs is found to be lower than that of reference pentacene FETs, the carrier transport in the BDT-dimer layers is more important than that in the pentacene CCLs for the high mobility.