In semiconductor nanocrystals the electronic energy gap is determined not only by the material but also by the size of the nanocrystals. This allows the construction of an energy‐gap gradient normal to multiple layers of nanocrystals where the diameters of the nanocrystals are monotonically increasing or decreasing in subsequent layers. In such devices we observe a highly efficient funneling of excitation energy from layers comprising smaller nanocrystals towards the layer with the largest nanocrystals in the center of the funnel. Most importantly, not only are excitons in radiative states transferred, but also excitons from trapped states, usually lost for luminescence, can be effectively recycled, hence increasing the overall luminescence yield.