Human mesenchymal stem cells are able to differentiate into chondrocytes, the cell type found in cartilage, making them an accessible system to study gene regulation during this process. Epigenetic mechanisms such as histone modifications and DNA methylation together with transcription factor binding play a role in activating and repressing gene expression. In this study, we investigated the genome-wide histone modification changes during chondrocyte differentiation. Integration of this data with DNA methylation and SOX9 transcription factor ChIP-seq revealed epigenetic changes at gene enhancer elements.Regions of the genome that transition from non-enhancers to enhancers in chondrocytes are enriched for SOX9 transcription factor binding sites. Luciferase reporter assays revealed that enhancer activity may be modulated by manipulating DNA methylation and SOX9 expression.This study has defined important regulatory elements in chondrocytes which could serve as targets for future mechanistic studies.
AbstractEpigenetic mechanisms are known to regulate gene expression during chondrogenesis. In this study, we have characterised the epigenome during in vitro differentiation of human mesenchymal stem cells (hMSCs) into chondrocytes. Chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) was used to assess a range of N-terminal post-transcriptional modifications (marks) to histone H3 lysines (H3K4me3, H3K4me1, H3K27ac, H3K27me3 and H3K36me3) in both hMSCs and differentiated chondrocytes.Chromatin states were characterised using histone ChIP-seq and cis-regulatory elements were identified in chondrocytes. Chondrocyte enhancers were associated with chondrogenesis related gene ontology (GO) terms. In silico analysis and integration of DNA methylation data with chondrogenesis chromatin states revealed that enhancers marked by histone marks H3K4me1 and H3K27ac were de-methylated during in vitro chondrogenesis.
Similarity analysis between hMSC and chondrocyte chromatin states defined in this studywith epigenomes of cell-types defined by the Roadmap Epigenomics project revealed that enhancers are more distinct between cell-types compared to other chromatin states. Motif analysis revealed that the transcription factor SOX9 is enriched in chondrocyte enhancers.Luciferase reporter assays confirmed that chondrocyte enhancers characterised in this study exhibited enhancer activity which may be modulated by inducing DNA methylation and SOX9 overexpression. Altogether, these integrated data illustrate the cross-talk between different epigenetic mechanisms during chondrocyte differentiation.